1H 35E/Oaklawn/Wycliff \begin{tabular}{|l|}
\hline Mockingbird/Lemmon \\
\hline

 Lovers/Northwest Hwy. Walnut Hill/Royal Forest/Harvest Hill 

\hline 1 H 635 \\
\hline

 

\hline IH 635 \\
\hline Alpha \\
\hline
\end{tabular} Spring Valley

| Spring Va |
| :--- |
| Bettline |


| Arapaho |
| :--- |

Keller Springs Trinity Mills/Frankford PGBT \begin{tabular}{|l|}
\hline Plano Parkway \\
\hline

 

\hline Plano \\
\hline Park \\
\hline Parker \\
\hline Wint \\
\hline
\end{tabular}

| Parker |
| :--- |
| Windhaven |


| Windhaven |
| :--- |
| Spring Creek | | Spring Cree |
| :--- |
| Legacy |


| Headquarters |
| :--- | :--- |


| Headqua |
| :--- |
| SRT |


| SRT |
| :--- |
| Gaylord |

Warren
John Hickman
Lebanon
Stonebrook
Cotton Gin/Main
Eldorado

| Eldorado |
| :--- |
| Panther Creek |

CR 24/Fields Pkwy
PGA Parkway
US 380
First Street

|  | S1.84 | S1.84 | S1.84 | \$1.84 | S1.84 | S1.84 | \$2.16 | \$2.26 | s2.26 | S2.48 | 53.16 | 53.16 | ${ }^{53.16}$ | 53.48 | ${ }^{54.33}$ | ${ }^{54.33}$ | ${ }^{\text {s4,33 }}$ | ${ }^{54.33}$ | ${ }^{\text {s4, } 33}$ | ${ }^{54.33}$ | S4.65 | ${ }^{54.65}$ | s4.81 | 54.81 | \$4.93 | 55.33 | 56.40 | 56.40 | 56.40 | S6.40 | s6.40 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | s3.68 | S3.68 | ${ }_{53.68}$ | ${ }_{53.68}$ | S | ${ }^{5} 58$ | ${ }_{\text {s4, } 32}$ | \$4.52 | \$4.52 | 54.96 | 5 | 5 | s6.32 | 5 | S8.66 | ${ }_{\text {S8.66 }}$ | s8.66 | S8.66 | S8.66 | s8.66 | S9.30 | S9.30 | S9.62 | ${ }_{59} 9.62$ | 59.86 | \$10.66 | \$12.80 | S6.40 | \$12.80 | \$12.80 | s12.80 | ${ }_{\text {S }}^{\substack{\text { S6,724 } \\ \text { Si, }}}$ |
| 53.68 |  | ${ }_{\substack{\text { S1.34 } \\ \$ 2.68}}^{\text {d }}$ | \$1.34 | $\underset{\substack{\text { \$1.34 } \\ 8268}}{\text { che }}$ | \$2.68 |  |  |  | ${ }_{\substack{\text { S1.76 } \\ 8.52}}^{\text {s. }}$ | $\underset{\substack{51.98 \\ 53.96}}{\text { S }}$ | 55.32 | ${ }_{\substack{52.66 \\ 55.32}}$ |  | ${ }_{\text {S22.98 }}^{\substack{\text { s.96 }}}$ | $\underset{\substack{53.83 \\ 57.66}}{ }$ | ${ }_{\text {¢ }}^{53.83}$ | ${ }_{\substack{53.83 \\ 57.66}}^{\text {S }}$ | $\underset{\substack{53.83 \\ 57.66}}{ }$ | s.383 <br> s7.66 | $\underset{\substack{53.83 \\ 57.66}}{\text { S }}$ | $\underset{\substack{54.15 \\ 88.30}}{\text { S }}$ | ${ }_{\substack{54.15 \\ 88.30}}^{\text {sich }}$ | ${ }_{\substack{\text { S4.31 } \\ 88.62}}^{\text {S }}$ | ${ }_{\substack{54.31 \\ 58.62}}$ | 54.43 <br> 88.86 |  | S5.90 <br> S11.80 | $\begin{aligned} & 55.90 \\ & \hline 511.80 \\ & \hline \end{aligned}$ | 55.90 | 55.90 | $\begin{array}{\|l\|l} \hline 5.900 \\ \hline 51.80 \\ \hline \end{array}$ | ( 56.22 |
| \$1.84 | \$1.34 |  | S0.91 | ${ }^{50.91}$ | 50.91 | s0.91 | \$1.23 | ${ }^{\text {s1.33 }}$ | \$1.33 | ${ }^{51.55}$ | S2.23 | \$2.23 | \$2.23 | \$2.55 | 53.40 | ${ }^{53.40}$ | ${ }^{53.40}$ | ${ }^{53,40}$ | ${ }^{53,40}$ | ${ }^{53.4}$ | ${ }^{53.72}$ | 53.72 | ${ }^{53.8} 8$ | ${ }^{53.88}$ | ${ }^{54.00}$ | ${ }^{54.40}$ | ${ }^{55.47}$ | ${ }^{55.47}$ | \$5.47 | 55.47 | ${ }^{55.47}$ | 55.79 |
| ${ }_{53.68}$ | s2.68 | -- | \$1.82 | ${ }_{\text {\$1. } 82}$ | ${ }_{81.82}$ | S1.82 | \$2.46 | \$2.66 | \$2.66 | ${ }^{53.10}$ | \$4.46 | ${ }_{54,46}$ | ${ }_{54.46}$ | 55.10 | S6.30 | ${ }^{56.30}$ | S6.80 | ${ }_{56,80}$ | ${ }_{\text {s6. } 80}$ | S6.8 | \$7,4 | 57,4 | ${ }^{57} 78$ | 57.76 | 88.00 | ${ }^{58.80}$ | \$10.94 | s10.94 | \$10.94 | S10.94 | \$10.94 | \$11.58 |
| \$1.84 | \$1.34 | S0.91 | -- | ${ }^{\text {S0.48 }}$ | 50.48 | ${ }_{\text {S0.48 }}$ | s0 80 | ${ }^{50.90}$ | ${ }^{50.90}$ | \$1.12 | \$1.80 | \$1.80 | 51.80 | \$212 | \$2.97 | ${ }_{\text {S2, }}$ | ${ }_{\text {S2 }} 5$ | \$2.97 | ${ }_{\text {S209 }} 53$ | ${ }^{52.97}$ | - 53.29 | 53.29 | ${ }^{53} 45$ | S3.45 | ${ }^{53.51}$ | ${ }_{\text {S }}^{53.97}$ | 55.04 | S5.04 | 55.04 | ${ }^{55.04}$ | ${ }^{55.04}$ | ${ }_{\text {S }} 51.366$ |
| ${ }^{51.84}$ | ${ }^{51.34}$ |  |  |  |  |  |  |  |  | 50.64 |  | ${ }^{51.32}$ | ${ }^{1} 1.32$ | 1.64 | 52.49 | ${ }^{52.4}$ |  |  | ${ }^{52,49}$ |  | 52.8 | 52.8 | s2.93 | 52. | 53.0 |  |  |  |  |  |  |  |
|  |  |  |  |  | - |  |  |  | 50.84 |  |  |  | S2. | 3,28 | 54.98 | 54.9 | 54.98 | 84.98 | 4.98 | 54.98 | 55.62 | 55.62 | 55.9 | S5.9 | S6.1 | 6.98 | 59.12 | 59.1 | so. |  |  |  |
| ${ }_{\text {S1. }}^{51}$ | 5268 | S0.91 | ${ }^{50.48}$ | - | -- | -- | ${ }_{\text {S0.32 }}$ | ${ }^{50.42}$ | S0.42 | ${ }^{50.64}$ | ${ }^{81.32}$ | 5264 | \$1.32 | ${ }_{51.64}$ | S2.49 | ${ }^{82.49}$ | S2.49 | \$2.49 | 5 | s2.49 | ${ }_{52} 8.81$ | ${ }_{\text {S2 }} 5281$ | S2.97 | s2.97 | ${ }^{53.09}$ | 3.49 | ${ }^{54.56}$ | ${ }^{54.56}$ | ${ }^{54.56}$ | S912 | ${ }^{54.45}$ | ${ }^{54.88}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ¢\$1.84 <br> $\$ 8.68$ | \$1.34 | \$0.91 | S0.48 | -- | -- | -- | -- | ¢ | S0.42 | ${ }_{\substack{50.64 \\ 81.28}}$ | \$1.32 | ¢ | ¢1.32 | ${ }_{\text {S3 }}$ | ¢ |  |  | ${ }_{\substack{\text { s2.49 } \\ 54.98 \\ \hline \\ \hline}}$ |  | ${ }_{54.98}$ |  | ${ }_{\substack{52.8 \\ 55.6}}^{\text {cei }}$ | ${ }_{\substack{\text { s2.92 } \\ 85.9}}$ | ${ }_{\substack{52.9 \\ 55.9}}^{\text {ced }}$ | ${ }_{\text {S }}^{53.01}$ | S6.98 | ${ }_{\substack{\text { s. } \\ 59.126}}$ | ${ }_{\substack{\text { s } \\ 9.156 \\ \hline 9.12}}$ | ${ }_{\substack{54.56 \\ 59.12}}^{\substack{\text { a }}}$ | ${ }_{9}^{54.56}$ | ${ }_{\substack{54.56 \\ 59.12}}$ | \$4.88 |
| \$2.16 | ${ }^{51.66}$ | ${ }^{5123}$ | ${ }^{50.80}$ |  | ${ }^{50.32}$ |  |  | S0.42 | ${ }^{50.42}$ | ${ }^{50.64}$ | ${ }^{11.32}$ | ${ }^{51.32}$ | ${ }^{51.32}$ | ${ }^{51.64}$ | ${ }^{524} 4$ | ${ }^{\text {s2 } 249}$ | ${ }^{52.49}$ | s2.49 | \$2.49 | ${ }^{52.49}$ | ${ }^{528} 8$ | ${ }^{52.81}$ | s2.97 | ${ }^{52.97}$ | ${ }^{53.09}$ | ${ }^{53.49}$ | ${ }^{54.56}$ | ${ }^{54.56}$ | ${ }^{54.56}$ | ${ }^{54.56}$ | ${ }^{54.56}$ | 54.88 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ${ }_{\text {S3.52 }}$ | ${ }_{\text {S2 } 2.66}$ | ¢1.80 | 80.84 | ${ }_{50.84}^{50.4}$ |  |  |  |  | 51.28 |  |  | S2.64 | ${ }_{53} 5.28$ | ${ }_{54}^{54.98}$ | ${ }_{\text {¢ } 4.9}$ | \$4.99 | ${ }_{54}^{54.98}$ | \$4.98 | S4.98 | 55.2 | ${ }_{55,62}$ | S5.9 | ${ }_{55} 5$ | ${ }_{56.1}^{50}$ | S6.98 | ${ }_{9} 59.12$ | ${ }_{9} 9.12$ | 54.51 | ${ }^{59.12}$ | 5.56 | \%4.88 |
| \$2.26 | 5.76 | \$1.33 | 50.90 | S0.42 | ${ }^{50}$ | 50.42 | s0.42 | -- |  |  | ${ }^{51.32}$ | \$1.32 | ${ }^{1.32}$ | \$1.64 | 52.49 | \$2.49 | 52.49 | \$2.49 | S2.93 | 5.4 | S2.81 | 52.81 | 52.9 | 52.97 | 5.09 | S 59 | ${ }^{54.56}$ | ${ }^{54.56}$ | ${ }^{54.50}$ | 5 | ${ }^{54.5}$ | 54.88 |
| \$4.52 | S3.52 | \$2.66 | S1.80 | s0.84 | 50.84 | S0.84 | s0.84 | - | -- | - | S2.64 | S2.64 | s2.64 | 93.28 | S4.98 | \$4.98 | S4.98 | S44.98 | 54.98 | S449 | 55.62 | 55.62 | \$5.99 | 55.94 | S6.18 | 56.98 | 59.12 | 59.12 | 59.12 | 59.12 | 99.1 | 99.76 |
|  | ${ }_{\substack{\text { S1.98 } \\ 51.96}}$ | ${ }_{\substack{\$ 1.55 \\ s 3.10}}^{\text {sid }}$ | ${ }_{\substack{\text { S1.122 }}}^{\text {s24 }}$ | \$0.64 | ${ }_{51}^{50}$ | ${ }_{\text {S0.64 }}^{\text {si. } 28}$ | ${ }_{\text {S0, }}^{\substack{\text { si. } 28}}$ | S1.28 | -- |  | s2.64 | ${ }^{2} 264$ | s2.64 | \$1.64 | 54.98 | ${ }_{\substack{52.49 \\ 84.98}}$ | 54.98 | 54.98 | 54.98 | 54.98 | ${ }_{\text {S }}^{52.81}$ | ${ }_{\text {s }}^{52.81}$ | ${ }_{\text {\$2.97 }}^{\text {S59, }}$ | \$599 | ${ }_{\substack{53.09 \\ 86.18}}$ | 56.98 | ${ }_{\text {S4.56 }}^{\text {s. }}$ | ${ }_{\text {ctich }}^{54.56}$ | ${ }_{\text {S }}^{54.15}$ | ${ }_{\substack{49.56}}^{5912}$ |  |  |
| S3.16 | S2.66 | \$2,23 | \$1.80 | ${ }_{\text {S1284 }}$ | ${ }_{51}^{51.32}$ | 32 | \$1.32 | ${ }^{81.32}$ | ${ }^{\text {s1. }}$, 22 | 1.32 |  | ${ }^{50.32}$ | ${ }^{50.32}$ | ${ }^{50.64}$ | \$1.49 | S1.49 | S1.49 | ${ }^{51.49}$ | 51.29 | S | S1.8. | 1.81 | 51.9 | 51.9 | 52.09 | S29 | ${ }^{53.56}$ | ${ }^{53.56}$ | ${ }^{3.56}$ | ${ }^{3.56}$ | ${ }^{53.56}$ | 3.88 |
|  | 5532 | ${ }_{54,46}$ | ${ }_{53} 50$ | \$2.64 | ${ }^{5}$ | 64 | \$2.64 | ${ }^{5264}$ | ${ }^{5264}$ | 5264 | -- | s0.64 | s0.64 | s1.28 | s298 | \$2.98 | S298 | S298 | 298 | 5298 | ${ }_{5362}$ | ${ }_{5362}$ | 5394 | S39 | S418 | 5498 | ${ }^{5712}$ | 8712 | 5712 | 571 | 57 | \%76 |
| s. | 52.08 | \$2.23 | \$1.80 | \$1.32 | \$1.32 | S1.32 | 132 | \$1.32 | \$1.32 | \$1.32 | S0.32 |  |  | 50.32 | St.17 | \$1.17 | ${ }^{51.17}$ | S2. | , | Stis | \$1.49 | S1.49 | ${ }^{\text {s1.65 }}$ | \$1.65 | ${ }^{\$ 1.7}$ | 52. | ${ }^{53} 3.24$ | 53.24 | 53.24 | ${ }^{53.24}$ | 5 | ${ }^{53.56}$ |
| s6.32 | S5.32 | S4.46 | 53.60 | \$2.64 | \$2.64 | S2.64 | \$2.64 | \$2.64 | S2.64 | S2.64 | s0.64 | -- | -- | 50.64 | \$2.34 | \$2.34 | s2.34 | S2.34 | s2.34 | S2.34 | S2.98 | 52.98 | \$3,38 | \$3.3] | \$3.5. | \$4.34 | S6.48 | \$6.48 | 86.48 | s6.48 | s6.4 | 87.12 |
| ${ }_{56}^{53}$ | ${ }_{5532}^{52.66}$ | \$2923 | ${ }_{5180}^{5180}$ | \$1.32 | ${ }_{\$ 1}$ | \$1.32 |  | \$1.32 | \$1.32 | \$1.32 | S0.32 |  | - | - | ${ }_{51.17}$ | ${ }_{\text {\$1, } 17}$ | ${ }_{8}^{51.17}$ | s23 | ${ }_{51.17} 8$ | ${ }_{5}^{51.17}$ | 529 | 298 | ${ }_{\text {S1.63 }}$ | S33 | 535 | S2.17 | ${ }_{5}^{53.24}$ | ${ }_{5}^{53.24}$ | ${ }_{\text {S }}^{53} 5$ | ${ }_{58,24}$ | ${ }^{53,22}$ |  |
|  |  |  |  | 81.64 |  |  |  |  |  | 51.64 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 55.96 | 55.10 |  | S3.28 |  |  |  |  |  | ${ }_{\text {S3 } 328}$ | ${ }^{51.28}$ |  |  |  | ${ }_{52}{ }^{\text {s }}$, | ${ }_{52}{ }^{2} .3$ | ${ }_{\text {s2 } 23}$ |  | ${ }^{3} 2.24$ |  | ${ }_{\text {s2, }}$ | ${ }_{\text {s2, }}$ | ${ }_{53}$ |  | 5 |  | ${ }_{56,48}^{50.24}$ | ${ }_{65}^{56.48}$ | ¢ 6.4 | ${ }_{\substack{5 \\ 65.42 \\ \hline 5.4 \\ \hline}}$ | S5.44 | 5.56 |
| ${ }_{\text {S4,33 }}$ | ${ }^{53.83}$ | ${ }^{53.40}$ | \$2.97 | 82.49 | \$2.49 | 52.49 |  | ${ }^{52.49}$ | \$2.49 | S2.49 | 51.49 | 5 | S23 |  |  |  | S | 50,39 | S130 | ${ }^{50.69}$ | \$1.01 | S. 30 | S.12 | s.17 | \$1.29 | 81.69 | ${ }^{52.76}$ | ${ }^{52.76}$ | 52.7 | ${ }_{\text {S2, }}^{52}$ | 5 | ${ }_{5}^{53.08}$ |
| 58.66 | s7.66 | S6.30 | 55.94 | ${ }_{54.98}$ | 54.98 | S4.98 | 54.98 | 44.98 | S4.98 | S4.98 | S2.98 | s2.34 | \$2.34 | S2.34 | -- | - | 81.38 | 51.38 | 81.38 | \$1.38 | S2.02 | S2.02 | \$2.34 | S2.34 | S2.58 | S3.38 | S5.52 | s5.52 | \$5.5 | 55.52 | 55.5 | s6.16 |
| ¢ 54.33 | ${ }_{\text {c7 }}^{53} 5$ | ${ }_{\text {s. } 5 \text {, } 40}$ | \$2.97 | ${ }^{52.49}$ | ${ }_{\text {S22, }}$ | S2.49 | S | S2.49 | ${ }_{\text {S249 }}$ | ${ }^{5249}$ | \$1.49 | S231 | ${ }_{51.17}$ | S1.34 | ${ }_{\text {S0, }}^{5}$ | - | ${ }^{50.55}$ | ${ }^{50.55}$ | ${ }^{50.51}$ | ${ }^{50.55}$ | ${ }^{50.87}$ | ${ }^{50.87}$ | ${ }^{51.03}$ | \$1.0 | \$1.15 | \$1.5. | ${ }_{\text {s2, } 22}$ | ${ }_{5}^{52.62}$ | ${ }^{5262}$ | ${ }^{\text {\$2, }}$ | ${ }^{\text {S2 } 2.6}$ | S2.94 |
| 54.33 |  |  | 52.97 |  |  |  |  |  |  | 52 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.98 |  |  |  |  |  |  |  |
| ¢ ${ }_{\text {S }}^{5}$ | ${ }_{5} 57.66$ | S6.80 | ${ }_{55.94}$ | ${ }_{\text {S4 }}^{4.98}$ | ${ }_{84}$ | ${ }_{54} 54.98$ | S 98 | ${ }_{\text {chas }}$ | ${ }_{\text {S4.98 }}$ | ${ }_{\text {S4.98 }}$ | S2.98 | s2.34 | ${ }_{52}$ | 2.34 | ${ }_{\text {cti }}$ | - | -- | ${ }_{\text {S0.76 }}$ | ${ }_{\text {S0.76 }}$ | ${ }_{50.76}$ | ${ }_{\text {S1 }}$ | ${ }_{\text {S }}$ | ${ }_{\text {s }}^{5172}$ | ${ }_{\text {s } 1.72}$ | ${ }^{3} 1.96$ | ${ }_{\text {s2.76 }}$ |  | ${ }_{\text {S4.90 }}$ | ¢ | ${ }_{\text {cta }}^{54.9}$ | ${ }_{\text {cta }}^{54.95}$ | S. |
| ${ }^{54.33}$ | ${ }^{50.85}$ | ${ }^{53.40}$ | ${ }^{52.97}$ | 82.49 | ${ }^{42} 49$ | 52.98 | 2. | \$2.49 | ${ }^{52} 2.49$ | S2.49 | S1.49 | St. | S. | , | 50.69 | ${ }^{50.55}$ | ${ }^{50.38}$ |  |  |  | 50.64 | 50.0 | 50.0 | 50.0 | S0.2 | 5. 32 | S2.3 | 52.90 | 52.39 | 52.95 | 52.39 | 析 |
| s8.66 | 57.66 | S6.80 | S5.94 | \$4.98 | \$4.98 | S4.98 | s4.98 | \$4.98 | S4.98 | S4.98 | S2.98 | S2.34 | s2.34 | s2.34 | S1.38 | \$1.10 | S0.76 | -- | - | - | s1.28 | \$1.28 | \$1.6. | \$1.60 | S1.8.8 | \$2.64 | S4.78 | 84.78 | 84.78 | s4.78 | ${ }_{54.78}$ | S5.42 |
| ${ }_{\text {S4 }}^{54} \mathbf{5 6 3}$ | ${ }^{53.83}$ | ${ }^{\text {s }} 3.4$ | S2.97 | ${ }^{52.49}$ | ${ }^{52} 2.49$ | S2.99 | S2. | s2.49 | ${ }^{52} 2.49$ | ${ }^{52.49}$ | S1.49 | s.12 | \$1.17 | , | 50.09 | ${ }^{50.55}$ | ${ }^{50.38}$ | -- | -- | -- | ${ }^{50.64}$ | ${ }^{50.64}$ | ${ }^{50.80}$ | ${ }^{50.80}$ | ${ }^{50.92}$ | ${ }^{51.32}$ | ${ }^{52.39}$ | ${ }^{\text {s2, } 29}$ | ${ }^{52} 389$ | ${ }^{523} 3$ | ${ }^{\text {s2, }}$ 8 | S2.71 |
| ${ }^{54,33}$ |  |  | S2.97 | S249 |  |  |  |  |  | 52.49 | 51.49 |  |  |  |  |  |  |  |  |  |  |  |  |  | 80.60 |  | S2.07 |  |  |  |  |  |
| ${ }_{58.66}$ | S7.66 | S6.30 | \$5.94 | ${ }_{\text {S4 }}$ | ${ }_{54}$ | ${ }_{54}$ | 98 | S4.98 | ${ }_{54.98}$ | ${ }_{54.98}$ | 5209 | ${ }_{52}{ }^{\text {s }}$ | s2.34 | \$2.34 | ${ }_{\text {S1.38 }}$ | ${ }_{\text {S1.10 }}$ | ${ }_{50.76}$ | ${ }_{\text {S0.64 }}$ | -- | -- | -- |  | ${ }^{50.96}$ | S0.96 | \$1.2 | s2.00 | ${ }_{\text {S4.14 }}$ | ${ }_{\text {S4.14 }}$ | ${ }_{\text {S4.14 }}$ | ${ }_{54,14}$ | \$4.14 | ${ }_{\text {s4.78 }}$ |
| ¢ ${ }_{\substack{\text { S4.65 } \\ \text { 993 }}}$ | ¢ 54.15 |  | 53.29 <br> 86.58 | s2.81 | ${ }_{5652}^{52.8}$ | ${ }_{\text {S }}^{5} 5$ | ${ }_{\text {S }}^{5 \text { S2.81 }}$ | ${ }_{\text {S2, } 22}^{52.81}$ | $52.81$ | $\begin{aligned} & 82.81 \\ & \hline 56.81 \end{aligned}$ | ¢1.1.81 | \$1.49 | \$1.49 | \$2.98 | S1.01 | ${ }_{\text {S0, }}^{50.87}$ | ${ }_{\text {S }}^{50.70}$ | $50.64$ | -- | - | -- |  |  |  | $50.60$ | S1.00 | ${ }_{\text {S }}^{52.07}$ | ${ }_{\text {S }}^{5107}$ | $\begin{array}{\|l\|l\|} \hline 52.07 \end{array}$ | \$2.07 | ${ }_{\text {S }}{ }_{\text {S207 }}$ | S2, 39 <br> 178 <br> 18 |
| ${ }_{54}{ }^{54.65}$ | 54.15 | 53.72 | ${ }_{53} 53.29$ | ${ }^{52.81}$ | ${ }^{32.81}$ | S52.81 | ${ }^{3281}$ | 52.81 | 52.81 | ${ }^{5282}$ | S1.81 | S1.49 | s1.49 | ${ }^{52.49}$ | 51.01 | 50.87 |  |  |  |  |  |  |  |  |  |  |  | ${ }_{52.07}$ |  | s2.07 |  |  |
| ${ }_{59} 54.30$ | ${ }_{58.30}$ | S7.44 | s6.58 | ${ }_{\text {S5.62 }}$ | ${ }_{55.62}$ | S5.62 | ${ }_{\text {S5.62 }}$ | S5.62 | ${ }_{5}{ }^{5} 56$ | S5.62 | ${ }_{\text {s3.62 }}$ | S2.98 | s2.98 | s2.98 | S2.02 | ${ }_{81.74}$ | ${ }_{\text {S1.40 }}$ | S1.28 | -- | -- | -- | - | - | - | \$1.20 | ${ }_{\text {s2.00 }}$ | ${ }_{\text {S4,14 }}$ | ${ }_{\text {S4, }}^{5}$ | ${ }_{54.1}$ | ${ }_{54.1}$ | ${ }_{54.1}$ | ${ }_{54.78}$ |
| ¢ 54.81 | ${ }_{54} 5.31$ | ${ }_{\text {S3 }}^{5} 5$ | ${ }_{\text {s }}^{5}$ | ${ }^{52.97}$ | ${ }^{\$ 2}$ | ${ }_{\text {S2929 }} 5$ | \$2.97 | ${ }^{52.97}$ | ${ }^{52.97}$ | ${ }^{529}$ | \$1.9 | ${ }^{51.65}$ | ${ }^{51.65}$ | ${ }^{51.65}$ | \$1.17 | ${ }^{\$ 1.0}$ | ${ }^{\text {s.0.8 }}$ | ${ }^{\text {sos.a }}$ | ${ }^{\text {S0.48 }}$ | ${ }^{5}$ | -- |  | - |  | S120 | s20 | S2.01 | stis | ${ }_{5} 4$ | 5. | 5. | 52,39 |
| 34.81 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | S88 | 87.76 | 56.90 | 85.94 | ${ }^{5} 5$ | S5.94 | 55.94 | S5.94 | S5.94 | S5.94 | S3.94 | s3.30 | s3.30 | 8,30 | s2.34 | \$2.06 | 81.72 | S1.60 | ${ }_{50.96}$ | s0.96 |  |  |  | - | - | \$2.00 | ${ }_{\text {s4.14 }}$ | ${ }_{\text {S4.14 }}$ | ${ }_{\text {s4,14 }}^{524}$ | ${ }_{\text {S4,14 }}$ | ${ }_{\text {s4.14 }}$ | ${ }_{\text {S4,78 }}$ |
| ${ }_{\text {S4986 }} 54.93$ | ${ }^{54.43}$ | S4.00 | ${ }^{53.57}$ | ${ }^{53.09}$ | ${ }^{53.09}$ | ${ }^{53.09}$ | ${ }^{53.09}$ | ${ }^{53.09}$ | 53.09 | 53.09 | S2.09 | \$1.77 | ${ }^{81.77}$ | ${ }^{51.77}$ | S1.29 | \$1.15 | ${ }_{\text {s0.08 }}$ | ${ }_{\text {S0,92 }}$ | ${ }_{\text {S0, }}^{50.60}$ | S0.60 | ${ }^{50.60}$ | ${ }^{50.60}$ | ${ }^{50.60}$ | - | - | \$1.00 | ${ }_{52.07}^{5207}$ | ${ }_{\text {s2074 }}^{5207}$ | ${ }_{\text {S }}^{520}$ | ${ }_{\text {s207 }}^{520}$ | ${ }_{\text {s20] }}^{5207}$ | \$2.39 |
|  | 98.86 | \$8.00 | S7.14 | s6.18 | 56.18 | s6.18 | 56.18 | s6.18 | S6.18 | S6.18 |  |  |  | ${ }_{53} 54$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ¢510.66 | ${ }_{54}^{54.83}$ | ( 48.40 | ${ }_{\text {¢ }}^{\text {¢7.94 }}$ |  |  | S6.98 |  | ${ }_{\text {s6.98 }}^{53.99}$ |  | ${ }_{\substack{53.98 \\ 56.98}}$ |  | ${ }_{\substack{\text { s. }}}^{51.37}$ | ¢ |  | ${ }_{\text {s }}^{51.69}$ | ${ }_{8}^{81.15}$ | ${ }_{\text {S1.38 }}^{52.76}$ | $\begin{array}{\|l\|l\|} \hline \$ 1.36 \\ \$ 2.6 \end{array}$ | S1.00 | ${ }_{\text {s }}^{1200}$ | \$1.00 | $\begin{array}{\|l\|l\|} \hline \end{array}$ | $\begin{array}{\|l\|l\|l\|l\|l\|} \hline \\ \$ 2000 \end{array}$ | $\begin{aligned} & 8.00 \\ & \text { s.00 } \end{aligned}$ | ${ }_{\text {S }}^{\text {s1.00 }}$ \$200 | -- | $\begin{gathered} 52.07 \\ 54.14 \end{gathered}$ | $\begin{gathered} \mathbf{s 2 . 0 7} \\ 54.14 \end{gathered}$ | $\begin{aligned} & \text { s.0.77 } \\ & 54.14 \end{aligned}$ | $\begin{array}{\|l\|l\|l\|l\|l\|} \hline 8.07 \\ \$ 4 . \end{array}$ | ${ }_{\text {s }}^{\text {s4.14 }}$ | ${ }_{\text {\$4.78 }}^{\text {s2, }}$ |
| ${ }^{56.40}$ | 55.90 | 55.47 | 55.04 | ${ }^{54.56}$ | 54.56 | 54.56 | ${ }^{54.56}$ | 54.56 | 54.56 | 54.56 | 53.56 | 53.24 | 53.24 | 5.24 | 52.76 | 52.62 | ${ }^{52.45}$ | ${ }^{3} 2.39$ | S2.0 | ${ }^{2} 2.01$ | 52.07 | ${ }^{32} 20$ | S2.01 | 52.0 | ${ }^{52} 20$ | s2.07 |  |  | S0.15 | 50.15 | 50.15 | 51.07 |
| \$12.80 | \$11.80 | S10.94 | \$10.08 | 99.12 | 59.12 | 59.12 | 99.12 | 59.12 | 59.12 | S9.12 | S7 | S6.48 | 96.48 | 5.48 | S5.52 | \$5.24 | 54.90 | S4.78 | S4.14 | 54.14 | S4.14 | S4.14 | 54.14 | S4.14 | 54.14 | \$4.14 |  |  | 51.5 | ${ }^{51.50}$ |  | s2.14 |
| 40 | ${ }^{559.90}$ | 55.47 | ${ }_{5}^{5504}$ | ${ }^{4.566}$ | ${ }_{54} 5.56$ | ${ }^{54.56}$ | ${ }^{54.56}$ | ${ }^{\text {44.56 }}$ | ${ }_{54} 54.56$ | ${ }_{54} 54.56$ | ${ }_{53} 5.56$ | ${ }_{\text {S324 }}$ | 93.24 | ${ }^{53,24}$ | ${ }_{\text {S }}^{5276}$ | ${ }_{5}^{5262}$ | ${ }^{5245}$ | S2,39 |  | ${ }_{5}^{52.07}$ | ${ }_{\text {S2 }}^{5207}$ | ${ }_{5}^{52074}$ | ${ }_{\text {S4, }}^{5207}$ | ${ }_{\text {S2 }}^{51}$ | ${ }_{5}^{52.07}$ | ${ }_{\text {S21 }}{ }^{\text {S20.7 }}$ | -- | - |  |  | ${ }^{50.42}$ | ${ }^{50.74}$ |
| 56.40 | sti.00 |  | ${ }_{55} 5504$ | ${ }_{59,56}$ | 54.56 | \$4.56 | 3, 56 | ${ }^{\text {s4.56 }}$ | \$4.56 | S4.56 | ${ }^{53.56}$ | 53.24 | 53.24 | 53.24 | S2.76 | ${ }^{52.62}$ |  | ${ }^{52.39}$ |  |  |  |  |  |  | \$2.07 |  |  |  |  |  |  |  |
| \$12.80 | ${ }^{\text {s11.80 }}$ | S10.94 | St10.08 | ${ }_{\text {coser }}$ | ${ }_{99} 9.12$ | S9.12 | ${ }_{\text {cos }}$ | S9.12 | S9.12 | S9.12 | S7.12 | ${ }_{\text {S6.48 }}$ | ${ }_{\text {S }}^{5}$ | ${ }_{56.48}$ | S5.52 | ${ }_{\text {S5.24 }}$ | ${ }_{\text {S4.90 }}$ | ${ }_{\text {S4.78 }}$ | ${ }_{\text {s4.14 }}$ | S4.14 | ${ }_{\text {S4 } 4.14}$ | ${ }_{\text {S4, } 14}$ | ${ }_{\text {S4.14 }}$ | S4.14 | ${ }_{\text {S4.14 }}$ | ${ }_{\text {S4.14 }}$ | \$1.50 | -- | -- | -- | ${ }_{50.84}$ | ${ }_{\text {s1. } 48}$ |
| S6.40 | ${ }^{515.9}$ | ${ }^{554.47}$ | ${ }^{550.04}$ | ${ }_{54.56}$ | ${ }_{54.56}$ | ${ }^{54.56}$ | ${ }^{54.56}$ | ${ }^{\text {S4.56 }}$ | ${ }_{54} 5.56$ | ${ }_{54} 5.56$ | ${ }_{\text {S }}^{53.56}$ | ${ }_{5}^{53.24}$ | ${ }_{5}^{53.24}$ | ${ }^{53.24}$ | S2.76 | ${ }^{52.62}$ | ${ }^{52,45}$ | ${ }_{\text {S }}^{5239}$ | \$2.07 | ${ }_{52} 8.07$ | ${ }_{\text {S2 }}^{5207}$ | ${ }_{5}^{52.07}$ | ${ }_{\text {S20, }}^{5207}$ | S2.0. | ${ }_{\text {S2, }}^{52}$ | ${ }_{\text {S20, }} 820$ | ${ }^{50.75}$ | - | - | - | -- | - |
| \$12.80 | S11.80 | S10.94 | \$10.08 | 99.12 | ${ }^{9} 9.12$ | 99.12 | 99.12 | 59.12 | ${ }^{59.12}$ | 59.12 | 57.12 | 56.48 | ${ }^{56.48}$ | S6.48 | 55.52 | ${ }_{55.24}$ | 54.90 | S4788 | ${ }_{54.14}$ | S4.14 | S4.14 | S4.14 | \$4.14 | 54.1 | S4.14 | \$4.14 |  |  |  |  |  |  |
| S6.40 | S5190 | ( 5 ST.47 | S. | S9.56 |  | S4.56 <br> s.12 | ¢9.12 | \$4.56 | ( 54.56 | ${ }_{\text {S }}^{54.56}$ |  | ¢ | ¢ |  | S5.72 | ${ }_{\substack{52.62 \\ 55.24}}^{\text {S }}$ | ${ }_{\text {S2 }}^{5245}$ | \$2.39 | \$2.07 | ${ }_{\text {S }}^{52.07}$ | ${ }_{\text {S }}^{52.07}$ | ${ }_{\text {S214 }}^{52.07}$ | ${ }_{\text {S414 }}^{52.07}$ | ${ }_{\text {S2, }}^{54}$ | ${ }_{\text {S }}$ | \$2.07 | ${ }_{\text {S }}^{\text {S0.75 }}$ | ${ }_{\substack{50.42}}^{\substack{\text { ci }}}$ | ${ }_{\substack{\text { S0.42 }}}$ | -- | - | - |
|  | S6 | S511 | S55.3 | ${ }^{54.8}$ | ${ }_{54}^{54.88}$ | \$4.88 | ${ }_{54}^{54.88}$ | ¢9,88 | 54.88 <br> 5976 | ${ }_{\text {ck }}^{54.88}$ | 53.88 | 53.56 | ${ }_{9}^{53.56}$ | ${ }_{\text {S3 }}^{53.56}$ | ${ }_{\text {S3. }}^{5}$ | ${ }^{82.9}$ | ¢2,77 | \$2.71 |  | \$2,39 | $\underset{\substack{52.39 \\ 54.78}}{ }$ | ${ }_{\text {S2 } 2.39}$ | \$2, ${ }_{\text {S29 }}$ | ${ }_{\text {S2 }}^{52} \mathbf{3 9}$ | \$2, ${ }_{\text {S29 }}$ | \$22. | \$1.07 | S0.1. | S0.74 |  |  |  |







$\underset{\substack{820 \\ 8.200}}{\substack{250}}$








End Trip



Sam Rayburn Tollway Toll Rates*

$\$ 0.00$ ZipCash Rat
*Please note that tolls shown are for two-axle vehicles. Vehicles with more than two axles would pay a higher toll

Chisholm Trail Parkway Toll Rates*
(Effective July 1, 2023)

*Please note that tolls shown are for two-axle vehicles. Vehicles with more than two axles would pay a higher toll.

End Trip

## 360 (1)TOLL


$\$ 0.00$ TollTag Rate
\$0.00 ZipCash Rate
*Please note that tolls shown are for two-axle vehicles.
Vehicles with more than two axles would pay a higher toll.

